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(see, e.g. [l]). In these cases, the original equation has a non-stationary distribution with density f(z - ct) (a 
“soliton” distribution). Note that such systems arise in the dynamics of variable-mass stochastic systems. 
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The problem of the stability of the point of rest of an autonomous system of ordinary differential equations 

from a class of reversible systems [l] characterized by the critical case of m zero roots and n pairs of pure 

imaginary roots is considered. When there are no internal resonances [2, 31, the point of rest always has 

Birkhoff complete stability [2]. Internal resonances may lead to Lyapunov instability. The conditions of 

stability and instability of the model system when there are third-order resonances may be obtained from a 

criterion previously developed [4] for the case of pure imaginary roots. The results are used to analyse the 

stability of the translational-rotational motion of an active artificial satellite in a non-Keplerian circular 

orbit, including a geostationary satellite in any latitude (4, 51. The region of stability of relative equilibria 

and regular precession of the satellite is constructed assuming a central gravitational field and the resonance 

modes are analysed. 

1. CONSIDER the system of equations of perturbed motion 

x’ = DX + Q, (X); X E RN; Q, (0) = 0 (1.1) 
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where D is a constant square matrix and @(X) is a holonomic vector function whose expansion in 
powers of the perturbations starts with terms of not lower than the second order. 

Assume that system (1.1) is reversible in the sense of [l], i.e. there exists a linear automorphism 
of the form [6] 

X-+QX, t-+--t, Q”=E (1.2) 

where Q is a non-singular square matrix and E is the identity matrix. Then there exists a linear 
transformation to new variables U, V which diagonalizes the matrix D and the automorphism (1.2) 
takes the form 

u--+u, v-+-v, t-t--t (1.3) 

The dimensions of the vector U are clearly the number of + 1 eigenvalues of the matrix Q and the 
dimensions of the vector V is the number of -1 eigenvalues. From (1.2) it follows that all the 
eigenvalues of Q are + 1. Assume additionally that dim U > dim V. Then in the new variables system 
(1.1) takes the form 

U' =AV+ F,(U,V), 

V'=HJ+F,(U,V), UER~+~, VER", m+2n=N (1.4) 

(F, (U, - V) =--F, (U,V), F, (U,-V)= F, (UJ)) 

where A and B are constant rectangular matrices and F, and F, are functions analogous to @ in 
(1.1). 

Analysing the structure of the matrix of the first-approximation system for (1.1)) we can show that 
its characteristic equation has no fewer than m zero roots with m groups of solutions. The remaining 
2n roots may be treated [l] (in the case of first-approximation stability and when there is no 
supplementary singularity) as pure imaginary and different. 

It follows from the above that we can transfer from the variable U, V to new variables 5 E R”, 
5 E C”, 5 E C” in which the matrix D is diagonal. The required transformation matrix has the 
following block structure: 

I 

M F F 

‘= 0 iS -iS I 

Here M, F and S are certain (m +n) X m, (m +n) x n, and n x n real rectangular matrices, 
respectively. 

The inverse transformation matrix has the form 

T 0 
P-1 = K iL 

hK -z ‘L I 

where T, K, L are also some m X (m + n), n x (m + n), and n X n real matrices, respectively. 
From the structures of the matrix P-l and the existence of the automorphism (1.3) for system 

(1.4) it follows that in the new variables the system has the automorphism 

E-+E, 6-G L5, t+- t (1.5) 

It can be shown that as a result the power series on the right-hand sides of the equations have 
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purely imaginary coefficients; the same also holds (as in the case with only purely imaginary roots 
[l, 71) for the system obtained after non-linear normalization [2, 31. Therefore, when there are no 
internal resonances, we obtain after non-linear normalization of (1.1) 

2’ - 8 - %fs (517 * * *, +mr v1r ’ * *, &l&d 
-. 
=a = v, (z1, * * -7 Gn, @I, . , .( %CJ 

XL’ = 0, (k = 1, . . .( m; s = 1, . . .) n) 

wheref, andf, are formal series with purely imaginary coefficients. As 

(1.6) 

we know [2], the trivial 
solution of system (1.6) (and therefore of the original system) is Birkhoff completely stable and if 
the normalizing transformation converges it is also Lyapunov stable. 

2. Let us now consider the resonance case, when the stability is determined by the first non-linear 
terms. The roots i& must satisfy the relationship (for third-order resonance [2,3]) 

<P, ‘) = ‘7 pi + ’ ’ ’ + pl = 3, 2 < I < 3, h = (h,, . . .( A,) (2.1) 

wherep = (pi, . . . , pI) is an integer vector with prime non-negative components. Then, changing in 
the normal form to polar coordinates rp, Op by the formulas zp = ,B1’2ei@B, Za = ,p1’2ei@P, we obtain 
the equations 

!& = 0 (I 2 13, ) 1: 11 r I, 1 r I’) (k = 1, . . ., rrb) 

1 

r,‘= b,sinf)r]: ~Ip1’2+O(15$,Ir~~l)r:/l, (s=l,..., 1) 
j=l 

1 

p&,,& + psb, COS 8 fl ry-bai 

f=l 
(2.2) 

8 = plel + . . . + p ,0,, 2 = (x1, . . ., xm), r = (rl, . . . , ml 
Here b, and c,k are some real constants and 6,~j is the Kronecker delta. 

If we set x = 0 in the model system obtained from (2.2) by omitting the tail of the expansion, this 
system takes the same form as in the case with only purely imaginary eigenvalues [3,8]. This means 
that if the model system was unstable without zero roots, it will also remain unstable with zero roots. 
On the other hand, if x#O, we can construct a sign-definite integral if it exists for x = 0. This 
combined with known stability results for third-order resonance suggests the following theorem. 

Theorem 1. If all the constants b,y in Eqs (2.2) are non-zero and there is at least one pair b,, b, 
such that b,b,<O, then the point of rest of the model system corresponding to (2.2) is Lyapunov 
stable. Otherwise, it is unstable. 

Stability can be proved using the integral 

F=~j;,k2+&r.+a~~ra 
k=1 1-1 

which is sign-definite (-ys > 0) when the stability condition of Theorem 1 is satisfied. The instability 
follows from the existence of the increasing solution 

xk * = 0, k = 1, . . ., m; r,* = 0, cL = I + 1, . . ., m 

t3*=&+, rs* =&($l,bj/p~)-l, s=l,...,Z 
(2.3) 
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This instability implies instability of the full system, i.e. we have the following theorem. 

Theorem 2. If the model system corresponding to (2.2) has a solution (2.3), then the trivial 
solution of system (2.2) is unstable. 

The proof relies on the considerations of [9] (a different proof apparently can be based on [lo]). 
To this end, we change in (2.2) to the coordinates 8, P, yl, . . . , y, , cpl, . . . , cp-1, rltl, . . . , r,, by 
the formulas 

S-l 

rs = cr,p cos rp, rI sin Cpj, s=l,...,Z-1 
I=1 

I-l 

r1 = alp rI sin Cpj 

j=l 
(2.4) 

py, = xkr k = 1, . . ., m; ‘T@=lbbjrJ IbjIPJ'29 l351,*+.,1 
i=l 

and introduce the perturbations q = 8 - 8*, 5, = cps - (ps*, s = 1, . . . , I- 1, where cps* are the values 
of cps on the solution (2.3). 

The equations for the new variables are written as 

yk’ = --21-‘LP”‘~k [I + 0 (I % IN + 0 (P” I Y 13, p I Y II P* I, I P* 13, k = 
= 1, . . ., m 

p’ = 2Z”‘Q’~~ 11 + 0 (] % ], ps ] y 13, I P/l 13 p”)] 

- 3z-“bP’I + P sil kil p&,kYk + P”o (1 p” I3 P-l, 1% 1”) 

(2.5) 
‘rl’ = 

%,’ = -2z-“4pqS + O(I P” p,i E ]“p) p-“, s = 1, . . 4) I- 1 

r a' = 0 (I P'fz 1") r,“,, cc = I + 1, . . ., n 

Here 

% = (%I, * * ., %l-1, 91, Y = (YI, * * -9 Y,)? P* = (P, rl+lV * - *I rrl) 

ws = (PY,, 
‘It . . ., py,, p”*, rl+17 . . . , rn”*) 

Consider the function [ll] 

which together with its derivative V’ satisfies, in view of (24, the condition I/V’>0 in the region 
V> 0 for sufficiently large y and is therefore a Chetayev function for system (2.5). 

Remark. 1. The change of xk to yk in (2.4) does not prevent the application of Chetayev’s instability theorem, 
because we only consider motion in the region p > 1 y [‘/r*. 

2. The result is also valid when the entire system (1.1) is reversible, and not only the model part obtained 
from (1.1) by omitting all terms of higher than second order. 

3. Let us apply the results to a stability analysis of the translational-rotational motion of an active 
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satellite, which is maintained by a weak jet-propulsion acceleration in a circular orbit whose plane 
does not pass through the Earth’s centre. This motion is of interest, in particular, for geostationary 
satellites maintained on an arbitrary latitude [4, 51. We will assume that the acceleration produced 
by the jet engines is constant in the attached coordinate system CX, Y1 Z, with the axes aligned 
along the principal central axes of inertia of the satellite; the acceleration vector w passes through 
the satellite’s centre of mass C. The satellite is regarded as a rigid body of variable mass which 
preserves the similarity of the ellipsoid of inertia as the mass is consumed. 

The presence of constant jet-propulsion acceleration makes is possible to maintain the centre of 
mass in a motion such that 

R = R,, (const), rp = ‘pO (const), e1 = olt + const 

where R, CJJ and e1 are respectively the radius, latitude and longitude of the satellite’s centre of mass 
in a spherical geocentric system of coordinates rotating with the Earth. This motion of the satellite is 
possible in two cases. In the first case (relative equilibrium), the satellite has a triaxial ellipsoid of 
inertia and is at rest in unperturbed motion relative to the orbital system CYXZ (its axes are aligned 
with the unit vectors of the spherical system of coordinates at the point C). In the second case 
(regular precession), the satellite has a dynamic axis of symmetry pointing in the direction of the 
acceleration vector w and spins uniformly around this axis. The dynamic axis of symmetry is at rest 
in unperturbed motion in the system CXYZ. 

Stability analysis of these stationary motions is not simple because the presence of the 
acceleration vector makes it impossible to separate the motion of the centre of mass from the 
rotational motion and it moreover produces positional forces (in addition to potential and 
gyroscopic forces), which render the system non-Hamiltonian. 

The problem of the stability of relative equilibrium has been considered in [4] with the Earth’s 
gravitational field approximated by the field of a homogeneous triaxial ellipsoid. As a result, the 
characteristic equation of the system in variations had no zero roots. Allowance for the non- 
centrality of the field in turn restricted the analysis to geostationary motions in which the centre of 
mass coincided with one of the points of libration (the points of libration are located in two 
perpendicular planes, each containing one of the axes of the equatorial section of the Earth’s 
ellipsoid). The results of Sets 1 and 2 enable us to relax this restriction by passing to a central model 
of the gravitational field. This approach is justified because for geostationary satellites the effect of 
non-centrality is comparable with lunar-solar perturbations. 

To obtain the equations of motion in a central field, it suffices to take I = F = 0 for the 
non-centrality parameters in the original system of equations in [4]. In this way, the equation in the 
longitude e1 separates from the main system. The remaining system of equations of 1 lth order has a 
family of partial solutions that correspond to the relative equilibrium of the satellite in a circular 
orbit on a given latitude cpo: 

R = Ro, cp = cp,, 8; = ml, PI = yl = 0, ya = sin h 

p = 0, q = coo co9 (q. - A), r = coo sin (cpo - A) 

Here o1 is the angular velocity of the satellite’s centre of mass relative to the Earth, projected on to 
the Earth’s spin axis, w0 = o1 + o3 is the projection of the absolute angular velocity of the centre of 
mass (03 is the angular velocity of the Earth’s rotation), p, q and r are the projections of the 
satellite’s absolute angular velocity on the attached axes and P1 , yl and 72 are the direction cosines 
that specify the relative position of the orbital and the attached coordinate systems. 

Introducing the perturbations 
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Xl = (R - RO)lRO, x2 = cp - cpo, 28 = (V - oo)/oo, 5s = cp’ho 
x6 = ploo, 5, = q//o0 - co9 (cpo - A), x8 = r/o0 - sin (cpo - h) 

x0 = &, xl0 = yl, xl1 = ya - sin h (tl = 0, + ost) 
(3.1) 

and the dimensionless time 7 = wet, we can show that the system of equations of perturbed motion 
admits of the linear automorphism 

11 --t Xl, x2 --t 52, x3 + x3, 24 + - 24 

X6--+ -x5, x4 + -56, x7+ x7, XIJ --t X8 (3.2) 

x,--f -%I, x10 * -%, x11* x119 z * --r 

The existence of this automorphism establishes the reversibility of this system and we obtain the 
previous case [to prove this, set I = E = 0 in the equations of perturbed motion [4] and check (3.2) 
by direct substitution]. 

From (3.2) and the results of Sec. 1, it follows that in the case of stability to a first approximation 
the characteristic equation has only purely imaginary and zero roots [it follows from the structure of 
(3.2) that at least one zero root exists]. 

Computer calculations have shown that the zero root is unique inside the first-approximation 
stability region. Thus, further analysis reduces to constructing regions in the parameter space in 
which none of the roots of the characteristic equation has a real part (as we have noted above, these 
are regions of Birkhoff complete stability with the exception of resonance sets) and identifying 
unstable resonance modes. Computer calculations show that the regions obtained by this method 
are virtually identical (with an accuracy proportional to the parameter E = 10P6) with the regions 
constructed for a non-central field [4]. 

Let us now consider the stability of regular precession. In this case, the relative position of the 
orbital system CXYZ and the attached system CXi Yi Zi is described by Euler angles cp, 6 and a’, 
and not by direction cosines. In the equations of motion of the centre of mass, the derivative of the 
longitude 8i’ is conveniently replaced by the projection of the absolute angular velocity of the 
satellite’s centre of mass on to the Earth’s spin axis o = 8 1* + ~3. Then the equations of motion of 
the centre of mass take the form 

daRldt2 - R (a2 cos2 cp + cp’“) = w cos 6 - pIR2 

d (R2cp’)ldt + Rams sin 2q/2 = -Rw cos $ sin 6 

d (Ram cos2 cp)ldt = Rw cos cp sin 9 sin 9 
(3.3) 

Here we assume that the acceleration vector w points along the CZi axis of the attached system of 
coordinates, which is the satellite’s dynamic axis of symmetry; p is the gravitational parameter of 
the central field. 

To obtain equations that describe the rotational motion of the satellite about the centre of mass, 
we introduce another (semiattached) system of coordinates CX’Y’Z’, in which the axis CZ’ 
coincides with the axis CZi , the axis CX’ is directed along the line of nodes formed by the planes 
XiCYr and XCY, and the axis CY’ completes the system to a right-hand system. As the phase 
coordinates we take the Euler angles 9 and 6 and the projections p, q and r of the satellite’s angular 
velocity vector on the axes of the semiattached system of coordinates. 

Without going in detail into complex calculations, we will give the final equations: 
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p’ = --cqr t_ q2 ctg 6 - qcp’ sin *isin 6 - qo cos ‘p cos +/Sin 6 + 

+ 3p (C - 1) R-3 Cos 6 sin 6, q’ = Cpr - pq ctg 6 + 

+ p(p’ sin q/Sin 6 + po cos cp co9 $/sin 6, r’ = 0 

9. = q/Sin 6 - cp’ sin ‘II) ctg 6 - w (cos cp co9 $ ctg 6 + sin 9) (3.4) 

6’ = p + Cp’ CO9 $ - 0 CoS 9, sin $ 

Here c is the ratio of the satellite’s moments of inertia, and the equation for a’ is separated and is 

not used in what follows. 

The system of equations (3.3) and (3.4) has a partial solution that corresponds to regular 
precession: 

R = R. (const), cp = ‘p. (const), R' = cp' = 0, o = a0 (const), p = 0 

q = a0 co9 (cpo - 6,), r = a0 sin (To - So) + o*, $ = 0, 6 = 6, (const) 

This requires the following relationships between the parameters of the unperturbed motion: 

tg0, = 
p sin 290 RoSooa 

2 (p co9 cpo - 1) 
p.= - 

cr 1 

00 C-1 
v=-= 

a* 2c co9 (cpo - 60) [ 
-5 sin 26, 
p 

-sin2(cp,- Go)] 

These relationships suggest the existence of a two-parameter family of solutions in the case of 

regular precession (with the parameters 90 and P, say). Another relationship determines the 

quantity w. : 

[& +(a:~,, --~)~,,~~~~os~cp,]" = w 

By Malkin’s theorem [ll], the characteristic equation of the system in variations for this 
two-parameter family necessarily has two non-zero roots. 

Introducing, as in (3.1), dimensionless perturbations and time 

Xl = R/R0 - 1, xa = cp - cpo, x8 = o/o,, - 1, x4 = R’ l(ooR,,) 

x5 = cp’/6Qj, 56 = ploo, x, = q/o~ - cos (cpo - 6,) 

x* = rl6.Q - sin (cpo - 6,) - Y, XQ = $,, 5x0 = 6 - 6, 

T = o&j 

we can rewrite the equations of perturbed motion in the form 

dz1 dza 
-&- = 54, x = x6P 

dxs 
-=2(1+~3:,)x,tg(cpo+s,)- dz 

__2 a (I+ 53) SI sin 29 sin xg 
1+x1 - 2 (I+ 51) sin -60 cm (~0 + 12) 

d”d = (I + x1:1) [(I + x3)* ra-9 hl + x3) + xsal - p (1 J sl)P - c; ,s;,o fyy dt * 

dZs ___2~_- (1 + 4* sin 2 (90 + ~3) S1 sin 29 cos xg 
Z= I+ Xl 2 + 2 (1 + 21) sin 80 

dxs -=(cc,+x,)[(C,+x,)~--C(SO+xg+~)- Z5Tx9 - 
dz 

(1 -I- 2s) cos (0 + R4) cc@ 3% 
+ 

3 (C - 1) &Cl 
- 

Sl P (1 + x1)a 
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dX7 -=x 
at 6 

dxa -= 
dz 

0, 2= co+slx7 -z,+sinxQ-((l + xJ-$cos(~+ 
1 

+ XQ) co9 x9 - (1 + x3) sin (cpo + 4, * = z6 + z5 cos x9 - 

-(I + 5) cos (To + x9) Sin tg 

(C$ = CO3 (% + GA SQ = sin (cpO - fi,), Cl = cos (6, + qo) 
S1 = sin (6, + x1&). 

This system admits of a linear automorphism, which, unlike (3.2), does not contain xll~xlI and 
uses x1o+x1o instead of xlo+ -xlo. It is therefore a reversible system of the class considered above. 
The problem of the stability of regular precession thus reduces to constructing a region of the 
parameter space in which the roots of the characteristic equation do not have real parts and 
analysing the internal resonances. Because of the high order of the system, the construction of the 
stability region in the cpo, -i plane and the analysis of third-order internal resonances (as the most 
dangerous) was carried out numerically by computer. The acceleration w was chosen from the 
condition for it to be a minimum, which necessitates satisfying the relationship [4] 

popt = Ys (v/1 + 8 se19 cp, - 1) 

The hatching in Fig. 1 is the boundary of the Birkhoff complete stability region and the curves 
crossing the boundary correspond to third-order internal resonances. The solid curves are the 
resonance sets that cause Lyapunov instability and the dashed curves are the loci where stability is 
preserved also in the second order. Calculations show that on some curves some of the normal 
coefficients b3 vanish. When there are no zero roots, this causes either preservation of stability also 
in the second order or non-robust instability [8]. These results remain true in our case also, as we see 

FIG. 1 
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from the previous discussion. Resonance sets with non-robust instability are denoted by the 
dash-dot curve. 

Comparing our results with those of [4], we note that the region of stability of regular precession 
is larger than that of relative equilibrium. 
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